金宝博滚球-环澳娱乐-土豪皇冠现金网

Distributed Optimization and Learning for Applications in Power and Energy Systems

主講人:丁正桃
講座時(shí)間:2026-01-15 13:30:00
講座地點(diǎn):臨港校區(qū)學(xué)術(shù)樓305
主辦單位:人工智能學(xué)部
主講人簡(jiǎn)介:丁正桃本科畢業(yè)于清華大學(xué),之后留學(xué)英國(guó)曼徹斯特大學(xué)取得碩士和博士學(xué)位。在新加坡工作十年后,丁教授返回英國(guó)曼徹斯特大學(xué)任教,后來(lái)?yè)?dān)任電力電子工程系控制系統(tǒng)教授;先后擔(dān)任中英聯(lián)合控制實(shí)驗(yàn)室主任,控制與機(jī)器人研究室主任,以及控制,機(jī)器人與通訊分部主任。他已出版專(zhuān)著5部,主編出版愛(ài)思唯爾《系統(tǒng)與控制工程百科全書(shū)》,發(fā)表學(xué)術(shù)論文400余篇。最近,丁教授在中國(guó)華電電力科學(xué)研究院從事新能源綜合優(yōu)化應(yīng)用以及沙戈荒新能源大基地等相關(guān)研究。丁正桃教授長(zhǎng)期從事控制理論、人工智能以及新能源系統(tǒng)的科研、教學(xué)和相關(guān)行政事務(wù),其主要研究方向包括分布優(yōu)化及控制、人工智能算法、網(wǎng)絡(luò)連接動(dòng)態(tài)系統(tǒng)的協(xié)同控制、非線(xiàn)性自適應(yīng)控制理論,新能源系統(tǒng)的控制與優(yōu)化等。 丁教授現(xiàn)任《無(wú)人機(jī)與自動(dòng)駕駛車(chē)輛》主編、《前沿》系列期刊非線(xiàn)性控制領(lǐng)域首席編輯,同時(shí)擔(dān)任《科學(xué)報(bào)告》《控制理論與技術(shù)》《無(wú)人系統(tǒng)》等十余本期刊編委。他是IEEE非線(xiàn)性系統(tǒng)與控制技術(shù)委員會(huì)、IEEE智能控制技術(shù)委員會(huì)、IFAC自適應(yīng)與學(xué)習(xí)系統(tǒng)技術(shù)委員會(huì)委員以及中國(guó)自動(dòng)化協(xié)會(huì)控制理論專(zhuān)委會(huì)委員,并于2021當(dāng)選英國(guó)國(guó)家數(shù)據(jù)科學(xué)與人工智能研究院——艾倫·圖靈研究院會(huì)士,2025年底入選IEEE會(huì)士(Fellow of IEEE)。
講座內(nèi)容:

There are many challenges and opportunities in areas such as net zero, internet of things, big data, machine learning, and smart grid, particularly concerning distributed learning, optimization, decision-making, and control. New energy resources are distributed in nature, and there are demands in distributed control and resource optimization for energy and power systems. Recent advances in distributed networks along with the development of complex and large-scale subsystems have significantly incentivized coordination and cooperation over multi-agent systems. Acknowledging the role of network communication in the decision-making, many distributed algorithms have been developed for distributed machine learning, optimization, and differential games, where certain control perspectives, such as consensus, adaptation, and time-varying topologies or parameters, are intrinsically aligned. Motivated by the interplay among optimization, control and learning, a revisit of typical control methods may offer deeper insights into how these algorithms can be refined in terms of their design and convergence. This talk will cover recent activities carried out by the speaker’s group in distributed algorithms, rooted in control theory. Topics include distributed time-varying optimization of multi-agent systems, cooperative and competitive machine learning over networks, with a particular focus on resource allocation, load forecasting, and day-ahead bidding in smart energy and power systems, federated learning algorithms focusing on data heterogeneity and their application on load forecasting and load profile identification.